
Speech synthesis 
Where did the signal processing go?

Simon King,  Centre for Speech Technology Research,  University of Edinburgh,  UK

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Simon King

CSTR website:     www.cstr.ed.ac.uk

Teaching website:      speech.zone

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Motivation

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



arXiv:1609.03499 (unreviewed manuscript)

WAVENET: A GENERATIVE MODEL FOR RAW AUDIO
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ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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where �1 < xt < 1 and µ = 255. This non-linear quantization produces a significantly better
reconstruction than a simple linear quantization scheme. Especially for speech, we found that the
reconstructed signal after quantization sounded very similar to the original.

2.3 GATED ACTIVATION UNITS

We use the same gated activation unit as used in the gated PixelCNN (van den Oord et al., 2016b):

z = tanh (Wf,k ⇤ x)� � (Wg,k ⇤ x) , (2)

where ⇤ denotes a convolution operator, � denotes an element-wise multiplication operator, �(·) is
a sigmoid function, k is the layer index, f and g denote filter and gate, respectively, and W is a
learnable convolution filter. In our initial experiments, we observed that this non-linearity worked
significantly better than the rectified linear activation function (Nair & Hinton, 2010) for modeling
audio signals.

2.4 RESIDUAL AND SKIP CONNECTIONS
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1⇥ 1
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Figure 4: Overview of the residual block and the entire architecture.

Both residual (He et al., 2015) and parameterised skip connections are used throughout the network,
to speed up convergence and enable training of much deeper models. In Fig. 4 we show a residual
block of our model, which is stacked many times in the network.

2.5 CONDITIONAL WAVENETS

Given an additional input h, WaveNets can model the conditional distribution p (x | h) of the audio
given this input. Eq. (1) now becomes

p (x | h) =
TY

t=1

p (xt | x1, . . . , xt�1,h) . (3)

By conditioning the model on other input variables, we can guide WaveNet’s generation to produce
audio with the required characteristics. For example, in a multi-speaker setting we can choose the
speaker by feeding the speaker identity to the model as an extra input. Similarly, for TTS we need
to feed information about the text as an extra input.

We condition the model on other inputs in two different ways: global conditioning and local condi-
tioning. Global conditioning is characterised by a single latent representation h that influences the
output distribution across all timesteps, e.g. a speaker embedding in a TTS model. The activation
function from Eq. (2) now becomes:

z = tanh

�
Wf,k ⇤ x+ V

T
f,kh

�
� �

�
Wg,k ⇤ x+ V

T
g,kh

�
.
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Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3
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Abstract
A text-to-speech synthesis system typically consists of multi-
ple stages, such as a text analysis frontend, an acoustic model
and an audio synthesis module. Building these components of-
ten requires extensive domain expertise and may contain brittle
design choices. In this paper, we present Tacotron, an end-to-
end generative text-to-speech model that synthesizes speech di-
rectly from characters. Given <text, audio> pairs, the model
can be trained completely from scratch with random initializa-
tion. We present several key techniques to make the sequence-
to-sequence framework perform well for this challenging task.
Tacotron achieves a 3.82 subjective 5-scale mean opinion score
on US English, outperforming a production parametric system
in terms of naturalness. In addition, since Tacotron generates
speech at the frame level, it’s substantially faster than sample-
level autoregressive methods.
Index Terms: text-to-speech synthesis, sequence-to-sequence,
end-to-end model.

1. Introduction
Modern text-to-speech (TTS) pipelines are complex [1]. For
example, it is common for statistical parametric TTS to have
a text frontend extracting various linguistic features, a dura-
tion model, an acoustic feature prediction model and a complex
signal-processing-based vocoder [2, 3]. These components are
based on extensive domain expertise and are laborious to de-
sign. They are also trained independently, so errors from each
component may compound. The complexity of modern TTS de-
signs thus leads to substantial engineering efforts when building
a new system.

There are thus many advantages of an integrated end-to-
end TTS system that can be trained on <text, audio> pairs
with minimal human annotation. First, such a system alleviates
the need for laborious feature engineering, which may involve
heuristics and brittle design choices. Second, it more easily al-
lows for rich conditioning on various attributes, such as speaker
or language, or high-level features like sentiment. This is be-
cause conditioning can occur at the very beginning of the model
rather than only on certain components. Similarly, adaptation to
new data might also be easier. Finally, a single model is likely
to be more robust than a multi-stage model where each com-
ponent’s errors can compound. These advantages imply that an
end-to-end model could allow us to train on huge amounts of
rich, expressive yet often noisy data found in the real world.

TTS is a large-scale inverse problem: a highly compressed
source (text) is “decompressed” into audio. Since the same text
can correspond to different pronunciations or speaking styles,

⇤ These authors really like tacos.
† These authors would prefer sushi.

this is a particularly difficult learning task for an end-to-end
model: it must cope with large variations at the signal level
for a given input. Moreover, unlike end-to-end speech recog-
nition [4] or machine translation [5], TTS outputs are continu-
ous, and output sequences are usually much longer than those
of the input. These attributes cause prediction errors to accu-
mulate quickly. In this paper, we propose Tacotron, an end-to-
end generative TTS model based on the sequence-to-sequence
(seq2seq) [6] with attention paradigm [7]. Our model takes
characters as input and outputs raw spectrogram, using sev-
eral techniques to improve the capability of a vanilla seq2seq
model. Given <text, audio> pairs, Tacotron can be trained
completely from scratch with random initialization. It does not
require phoneme-level alignment, so it can easily scale to using
large amounts of acoustic data with transcripts. With a simple
waveform synthesis technique, Tacotron produces a 3.82 mean
opinion score (MOS) on an US English eval set, outperforming
a production parametric system in terms of naturalness1.

2. Related Work
WaveNet [9] is a powerful generative model of audio. It works
well for TTS, but is slow due to its sample-level autoregressive
nature. It also requires conditioning on linguistic features from
an existing TTS frontend, and thus is not end-to-end: it only
replaces the vocoder and acoustic model. Another recently-
developed neural model is DeepVoice [10], which replaces ev-
ery component in a typical TTS pipeline by a corresponding
neural network. However, each component is independently
trained, and it’s nontrivial to change the system to train in an
end-to-end fashion.

To our knowledge, [11] is the earliest work touching end-
to-end TTS using seq2seq with attention. However, it requires
a pre-trained hidden Markov model (HMM) aligner to help the
seq2seq model learn the alignment. It’s hard to tell how much
alignment is learned by the seq2seq per se. Second, a few tricks
are used to get the model trained, which the authors note hurts
prosody. Third, it predicts vocoder parameters hence needs a
vocoder. Furthermore, the model is trained on phoneme inputs
and the experimental results seem to be somewhat limited.

Char2Wav [12] is an independently-developed end-to-end
model that can be trained on characters. However, Char2Wav
still predicts vocoder parameters before using a SampleRNN
neural vocoder [13], whereas Tacotron directly predicts raw
spectrogram. Also, their seq2seq and SampleRNN models need
to be separately pre-trained, but our model can be trained from
scratch. Finally, we made several key modifications to the
vanilla seq2seq paradigm. As shown later, a vanilla seq2seq
model does not work well for character-level inputs.

1Sound demos can be found at https://google.github.
io/tacotron
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Figure 1: Model architecture. The model takes characters as input and outputs the corresponding raw spectrogram, which is then fed
to the Griffin-Lim reconstruction algorithm to synthesize speech.

Figure 2: The CBHG module adapted from [8].

3. Model Architecture
The backbone of Tacotron is a seq2seq model with attention
[7, 14]. Figure 1 depicts the model, which includes an encoder,
an attention-based decoder, and a post-processing net. At a
high-level, our model takes characters as input and produces
spectrogram frames, which are then converted to waveforms.
We describe these components below.

3.1. CBHG module

We first describe a building block dubbed CBHG, illustrated in
Figure 2. CBHG consists of a bank of 1-D convolutional filters,
followed by highway networks [15] and a bidirectional gated re-
current unit (GRU) [16] recurrent neural net (RNN). CBHG is a
powerful module for extracting representations from sequences.
The input sequence is first convolved with K sets of 1-D con-
volutional filters, where the k-th set contains Ck filters of width
k (i.e. k = 1, 2, . . . ,K). These filters explicitly model lo-
cal and contextual information (akin to modeling unigrams, bi-

grams, up to K-grams). The convolution outputs are stacked
together and further max pooled along time to increase local
invariances. Note that we use a stride of 1 to preserve the orig-
inal time resolution. We further pass the processed sequence to
a few fixed-width 1-D convolutions, whose outputs are added
with the original input sequence via residual connections [17].
Batch normalization [18] is used for all convolutional layers.
The convolution outputs are fed into a multi-layer highway net-
work to extract high-level features. Finally, we stack a bidi-
rectional GRU RNN on top to extract sequential features from
both forward and backward context. CBHG is inspired from
work in machine translation [8], where the main differences
from [8] include using non-causal convolutions, batch normal-
ization, residual connections, and stride=1 max pooling. We
found that these modifications improved generalization.

3.2. Encoder

The goal of the encoder is to extract robust sequential repre-
sentations of text. The input to the encoder is a character se-
quence, where each character is represented as a one-hot vector
and embedded into a continuous vector. We then apply a set
of non-linear transformations, collectively called a “pre-net”, to
each embedding. We use a bottleneck layer with dropout as
the pre-net in this work, which helps convergence and improves
generalization. A CBHG module transforms the pre-net out-
puts into the final encoder representation used by the attention
module. We found that this CBHG-based encoder not only re-
duces overfitting, but also makes fewer mispronunciations than
a standard multi-layer RNN encoder (see our linked page of au-
dio samples).

3.3. Decoder

We use a content-based tanh attention decoder (see e.g. [14]),
where a stateful recurrent layer produces the attention query
at each decoder time step. We concatenate the context vector
and the attention RNN cell output to form the input to the de-
coder RNNs. We use a stack of GRUs with vertical residual
connections [5] for the decoder. We found the residual connec-
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Table 2: 5-scale mean opinion score evaluation.

mean opinion score
Tacotron 3.82 ± 0.085

Parametric 3.69 ± 0.109
Concatenative 4.09 ± 0.119

(a) Vanilla seq2seq + scheduled sampling

(b) GRU encoder

(c) Tacotron (proposed)

Figure 3: Attention alignments on a test phrase. The decoder
length is Tacotron is shorter due to the use of the output reduc-
tion factor r=5.

hard to compare models based on objective metrics, which of-
ten do not correlate well with perception [24]. We mainly rely
on visual comparisons instead. We strongly encourage readers
to listen to the provided samples.

First, we compare with a vanilla seq2seq model. Both the
encoder and decoder use 2 layers of residual RNNs, where each
layer has 256 GRU cells (we tried LSTM and got similar re-
sults). No pre-net or post-processing net is used, and the de-
coder directly predicts linear-scale log magnitude spectrogram.
We found that scheduled sampling (sampling rate 0.5) is re-
quired for this model to learn alignments and generalize. We
show the learned attention alignment in Figure 3. Figure 3(a)
reveals that the vanilla seq2seq learns a poor alignment. One
problem is that attention tends to get stuck for many frames be-
fore moving forward, which causes bad speech intelligibility in
the synthesized signal. The naturalness and overall duration are
destroyed as a result. In contrast, our model learns a clean and
smooth alignment, as shown in Figure 3(c).

Second, we compare with a model with the CBHG encoder
replaced by a 2-layer residual GRU encoder. The rest of the
model, including the encoder pre-net, remain exactly the same.
Comparing Figure 3(b) and 3(c), we can see that the alignment

(a) Without post-processing net (b) With post-processing net

Figure 4: Predicted spectrograms with and without using the
post-processing net.

from the GRU encoder is noisier. Listening to synthesized sig-
nals, we found that noisy alignment often leads to mispronunci-
ations. The CBHG encoder reduces overfitting and generalizes
well to long and complex phrases.

Figures 4(a) and 4(b) demonstrate the benefit of using the
post-processing net. We trained a model without the post-
processing net while keeping all the other components un-
touched (except that the decoder RNN predicts linear-scale
spectrogram). With more contextual information, the prediction
from the post-processing net contains better resolved harmon-
ics (e.g. higher harmonics between bins 100 and 400) and high
frequency formant structure, which reduces synthesis artifacts.

5.2. Mean opinion score tests

We conduct mean opinion score tests, where the subjects were
asked to rate the naturalness of the stimuli in a 5-point Likert
scale score. The MOS tests were crowdsourced from native
speakers. 100 unseen phrases were used for the tests and each
phrase received 8 ratings. When computing MOS, we only in-
clude ratings where headphones were used. We compare our
model with a parametric (based on LSTM [19]) and a concate-
native system [25], both of which are in production. As shown
in Table 2, Tacotron achieves an MOS of 3.82, which outper-
forms the parametric system. Given the strong baselines and
the artifacts introduced by the Griffin-Lim synthesis, this repre-
sents a very promising result.

6. Discussions
We have proposed Tacotron, an integrated end-to-end genera-
tive TTS model that takes a character sequence as input and
outputs the corresponding spectrogram. With a very simple
waveform synthesis module, it achieves a 3.82 MOS score on
US English, outperforming a production parametric system in
terms of naturalness. Tacotron is frame-based, so the inference
is substantially faster than sample-level autoregressive methods.
Unlike previous work, Tacotron does not need hand-engineered
linguistic features or complex components such as an HMM
aligner. It can be trained from scratch with random initializa-
tion. We perform simple text normalization, though recent ad-
vancements in learned text normalization [26] may render this
unnecessary in the future.

We have yet to investigate many aspects of our model; many
early design decisions have gone unchanged. Our output layer,
attention module, loss function, and Griffin-Lim-based wave-
form synthesizer are all ripe for improvement. For example,
it’s well known that Griffin-Lim outputs may have audible arti-
facts. We are currently working on fast and high-quality neural-
network-based spectrogram inversion.
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Part 1 - Mini-tutorial - Text-to-speech using Deep Neural Networks
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The end-to-end problem we want to solve
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A problem we can actually solve with machine learning
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We can describe the core problem as sequence-to-sequence regression

output sequence
(acoustic features)

input sequence
(linguistic features)

Different lengths, because of 
differing ‘clock rates’
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• Text processing
• pipeline architecture
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• Regression
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• acoustic model

• Waveform generation
• acoustic features
• signal processing

From text to speech

Front end
Waveform 
generator

Statistical 
model
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Text processing pipeline

Front end

LTS Phrase 
breakstokenize POS 

tag intonation

• Step 1: divide input stream into tokens, which are potential words

• For English and many other languages
• rule based
• whitespace and punctuation are good features

• For some other languages, especially those that don’t use whitespace
• may be more difficult
• other techniques required (out of scope here)

Tokenize & Normalize
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Text processing pipeline

Front end

LTS Phrase 
breakstokenize POS 

tag intonation

• Step 2: classify every token, finding Non-Standard Words that need further processing

Tokenize & Normalize

In 2011, I spent £100 at IKEA on 100 DVD holders.

NYER MONEY ASWD NUM LSEQ
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Tokenize & Normalize

Text processing pipeline

Front end

LTS Phrase 
breakstokenize POS 

tag intonation

• Step 3: a set of specialised modules to process NSWs of a each type

2011  NYER   twenty eleven
£100  MONEY  one hundred pounds
IKEA  ASWD   apply letter-to-sound
100   NUM    one hundred
DVD   LSEQ   D. V. D.  dee vee dee
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NPS Affairs
NP Institute
IN at
NP U-Mass
NP Boston,
NP Doctor
NP Ed
NP Beard,
VBZ says
DT the
NN push
IN for
VBP do
PP it
PP yourself
NN lawmaking
VBZ comes
IN from
NNS voters
WP who
VBP feel
VBN frustrated
IN by
PP$ their
JJ elected
NNS officials.
CC But
DT the
NN initiative

POS tagging

• Part-of-speech tagger
• Accuracy can be very high
• Trained on annotated text data
• Categories are designed for text, not speech

Text processing pipeline

Front end

LTS Phrase 
breakstokenize POS 

tag intonation
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AEGON  EY1 G AA0 N
AELTUS  AE1 L T AH0 S
AENEAS  AE1 N IY0 AH0 S
AENEID  AH0 N IY1 IH0 D
AEQUITRON  EY1 K W IH0 T R AA0 N
AER  EH1 R
AERIAL  EH1 R IY0 AH0 L
AERIALS  EH1 R IY0 AH0 L Z
AERIE  EH1 R IY0
AERIEN  EH1 R IY0 AH0 N
AERIENS  EH1 R IY0 AH0 N Z
AERITALIA  EH2 R IH0 T AE1 L Y AH0
AERO  EH1 R OW0
AEROBATIC  EH2 R AH0 B AE1 T IH0 K
AEROBATICS  EH2 R AH0 B AE1 T IH0 K S
AEROBIC  EH0 R OW1 B IH0 K
AEROBICALLY  EH0 R OW1 B IH0 K L IY0
AEROBICS  ER0 OW1 B IH0 K S
AERODROME  EH1 R AH0 D R OW2 M
AERODROMES  EH1 R AH0 D R OW2 M Z
AERODYNAMIC  EH2 R OW0 D AY0 N AE1 M IH0 K
AERODYNAMICALLY  EH2 R OW0 D AY0 N AE1 M IH0 K L IY0
AERODYNAMICIST  EH2 R OW0 D AY0 N AE1 M IH0 S IH0 S T
AERODYNAMICISTS  EH2 R OW0 D AY0 N AE1 M IH0 S IH0 S T S
AERODYNAMICISTS(1)  EH2 R OW0 D AY0 N AE1 M IH0 S IH0 S
AERODYNAMICS  EH2 R OW0 D AY0 N AE1 M IH0 K S
AERODYNE  EH1 R AH0 D AY2 N
AERODYNE'S  EH1 R AH0 D AY2 N Z
AEROFLOT  EH1 R OW0 F L AA2 T

• Pronunciation model
• dictionary look-up,  plus

• letter-to-sound model
• But

• need deep knowledge of the 
language to design the phoneme set

• human expert must write dictionary 

Pronunciation / LTS

Text processing pipeline

Front end

LTS Phrase 
breakstokenize POS 

tag intonation
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Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

The linguistic specification
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Linguistic feature engineering

linguistic 
specification

Front end

text

Author of the… Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling
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Linguistic feature engineering

linguistic 
specificationtext

feature 
extraction

feature 
engineering

Author of the… Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling
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Flatten & encode: convert linguistic specification to vector sequence

“linguistic timescale”

Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling
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Upsample: add duration information

linguistic timescale acoustic framerate
predict durations
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Upsample: add duration information

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

linguistic timescale acoustic framerate
predict durations
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• Text processing
• pipeline architecture
• linguistic specification

• Regression
• duration model
• acoustic model

• Waveform generation
• acoustic features
• signal processing

From text to speech

Front end
Waveform 
generator

Statistical 
model

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Acoustic model: a simple “feed forward” neural network

information flows in this direction

input layer output layer
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What are all those layers for?

a representation of 
the input a representation of 

the output

learned 
intermediate 

representations
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What are all those layers for?

a representation of 
the input a representation of 

the output

learned 
intermediate 

representations

a sequence of non-linear projections
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[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

Synthesis with a neural network
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[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

Synthesis with a neural network
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[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

Synthesis with a neural network
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• Text processing
• pipeline architecture
• linguistic specification

• Regression
• duration model
• acoustic model

• Waveform generation
• acoustic features
• signal processing

From text to speech

Front end
Waveform 
generator

Statistical 
model
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What are the acoustic features?

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…
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What are the acoustic features?
STRAIGHT is a VOCODER

input 
signal-1 F0 analysis

spectral 
envelope 
analysis

F0

analysis

non-
periodicity

spectral 
envelope

non-periodicity 
analysis

non-periodic 
component  
generator

shaper and 
mixer

filter output 
signal

synthesis

periodic 
pulse 

generator
modification

data

process

signal

parameter

physical 
attributes
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“Author of the …”

Front end

LTS Phrase 
breakstokenize POS 

tag intonation

Putting it all together: text-to-speech with a neural network
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Front end

LTS Phrase 
breaks intonation

Putting it all together: text-to-speech with a neural network

Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling
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Putting it all together: text-to-speech with a neural network

Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling
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Putting it all together: text-to-speech with a neural network

Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling
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Putting it all together: text-to-speech with a neural network

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…
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[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

STRAIGHT is a VOCODER

input 
signal-1 F0 analysis

spectral 
envelope 
analysis

F0

analysis

non-
periodicity

spectral 
envelope

non-periodicity 
analysis

non-periodic 
component  
generator

shaper and 
mixer

filter output 
signal

synthesis

periodic 
pulse 

generator
modification

data

process

signal

parameter

physical 
attributes

Putting it all together: text-to-speech with a neural network
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Part 2 - Conventional signal processing for speech synthesis
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Signal processing for speech synthesis

• A typical vocoder: WORLD
• Acoustic feature extraction
• Feature engineering
• Waveform generation
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• Phoneme /a:/

Why we use acoustic feature extraction - waveform
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• Phoneme /a:/

Why we use acoustic feature extraction - magnitude spectrum
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• Developed by Masanori Morise since 2009

• Free and Open Source (modified BSD licence)

• Speech Features:
• Spectral Envelope (estimated using CheapTrick)
• F0 (estimated using DIO)
• Band aperiodicities (estimated using D4C)

A typical vocoder: WORLD
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• Hanning window length 3 T0 

WORLD: spectral envelope estimation

 Power is temporally stable
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WORLD: spectral envelope estimation
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• Apply a moving average filter
• length (2/3) F0

WORLD: spectral envelope estimation
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• Apply another moving average filter
• length 2 F0

WORLD: spectral envelope estimation
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• SpEnv = q0 logSp(F) + q1 logSp(F+F0)+q1 logSp(F-F0)

• actually done in the cepstral domain

• illustrated here in the spectral domain

WORLD: spectral envelope estimation
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WORLD: F0 estimation
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• The ratio between aperiodic and 
periodic energy, averaged over 
certain frequency bands

• i.e., total power / sine wave power

• In the example, this ratio is 
• lowest in band a 

• more in band b 

• highest in band c

WORLD: band aperiodicities

ba c
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Signal processing for speech synthesis

• A typical vocoder: WORLD
• Acoustic feature extraction
• Feature engineering
• Waveform generation
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Author   of   the  ...

ao th er ah f dh ax

syl syl syl syl

sil

NN of DT

1 0 0 0

...

...

Statistical 
model

linguistic 
specification

Acoustic feature extraction

text waveformacoustic features

feature 
extraction

feature 
extraction

Author of the…
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Acoustic feature extraction & engineering

waveform
raw vocoder 

features

feature 
engineering

acoustic features

feature 
extraction
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Acoustic feature engineering

raw vocoder 
features

acoustic features
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Acoustic feature engineering

raw vocoder 
features

acoustic features

Acoustic feature engineering
need to explain mel cep as feature 
engineering

raw vocoder 
features

acoustic features

Acoustic feature engineering
need to explain mel cep as feature 
engineering

raw vocoder 
features

acoustic features
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Type Static Δ ΔΔ Static Δ ΔΔ Static Δ ΔΔ Static

Dim 60 x 3 = 180 5 x 3 = 15 1 x 3 = 3 1

Interpolated log(F0) 
(dim=1)

Spectral Envelope 
(dim=fft_len/2)

Band aperiodicities 
(dim=5)

F0 
(dim=1)

Raw 
Features

Mel-Cepstrum 
(dim=60)

log(F0) 
(dim=1)

Normalisation

voicing 
decision

Acoustic feature engineering
need to explain m

el cep as feature 
engineering

ra
w

 vo
c
o
d

e
r 

fe
a
tu

re
s

a
c
o
u
stic

 fe
a
tu

re
s

Acoustic feature engineering
need to explain m

el cep as feature 
engineering

ra
w

 vo
c
o
d

e
r 

fe
a
tu

re
s

a
c
o
u
stic

 fe
a
tu

re
s
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Acoustic feature engineering

Type Static Δ ΔΔ Static Δ ΔΔ Static Δ ΔΔ Static

Dim 60 x 3 = 180 5 x 3 = 15 1 x 3 = 3 1

Interpolated log(F0) 
(dim=1)

Spectral Envelope 
(dim=fft_len/2)

Band aperiodicities 
(dim=5)

F0 
(dim=1)

Raw 
Features

Mel-Cepstrum 
(dim=60)

log(F0) 
(dim=1)

Normalisation

voicing 
decision
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Design choices: acoustic features

• fixed framerate or pitch synchronous
• cepstrum or spectrum
• linear or warped frequency (e.g., Mel)
• order
• interpolate F0
• phase modelling
• no:  e.g., Tacotron
• yes:  e.g., Espic, Valentini-Botinhao, King, 

Interspeech 2017
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Signal processing for speech synthesis

• A typical vocoder: WORLD
• Acoustic feature extraction
• Feature engineering
• Waveform generation
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From acoustic features back to raw vocoder features

Spectral Envelope 
(dim=fft_len/2)

F0 
(dim=1)

Raw 
Features

Band aperiodicities 
(dim=5)

log(F0) 
(dim=1)

Smoothing (MLPG)

De-normalisation

Feat Mel-Cepstrum Band aperiodicities Interpolated log(F0) voicing

Type Static Δ ΔΔ Static Δ ΔΔ Static Δ ΔΔ Static
Dim 60 x 3 = 180 5 x 3 = 15 1 x 3 = 3 1

Spectral Expansion
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• Computation of pulse locations

• Voiced segments: create one pulse every fundamental period,  T0
• calculate T0 from F0, which has been predicted by the acoustic model

• Unvoiced segments:  fixed rate    T0 = 5ms

WORLD: periodic excitation using a pulse train

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



WORLD: obtain spectral envelope at exact pulse locations, by interpolation

pulse location

Frequency (Hz)

Magnitude 
spectrum (dB)

interpolated spectrum
at pulse location

0

5k

frame n

frame n+1
Time
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WORLD: generate waveform

Minimum 
Phase  

Construction

PSOLANoise 
Gen FFT IFFT

Aperiodic 
Magnitude 
Spectrum

Periodic 
Magnitude 
Spectrum

Aperiodic 
Complex 
Spectrum

Periodic 
Complex 
Spectrum

Aperiodic 
Impulse 

Response

Periodic 
Impulse 

Response

Minimum 
Phase  

Construction
IFFT

Synthesised
Speech
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Design choices: waveform generation

• fixed framerate or pitch synchronous
• may be different from what you 

used in acoustic feature extraction
• cepstrum or spectrum
• source
• pulse/noise or mixed or sampled
• phase
• synthetic (e.g., pulse train + 

minimum phase filter)  or

• predict using acoustic model
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Examples

System feedforward BLSTM

Merlin + 
WORLD

Merlin + 
STRAIGHT
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So, what happened next … ?
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ABSTRACT

This paper introduces WaveNet, a deep neural network for generating raw audio
waveforms. The model is fully probabilistic and autoregressive, with the predic-
tive distribution for each audio sample conditioned on all previous ones; nonethe-
less we show that it can be efficiently trained on data with tens of thousands of
samples per second of audio. When applied to text-to-speech, it yields state-of-
the-art performance, with human listeners rating it as significantly more natural
sounding than the best parametric and concatenative systems for both English and
Mandarin. A single WaveNet can capture the characteristics of many different
speakers with equal fidelity, and can switch between them by conditioning on the
speaker identity. When trained to model music, we find that it generates novel and
often highly realistic musical fragments. We also show that it can be employed as
a discriminative model, returning promising results for phoneme recognition.

1 INTRODUCTION

This work explores raw audio generation techniques, inspired by recent advances in neural autore-
gressive generative models that model complex distributions such as images (van den Oord et al.,
2016a;b) and text (Józefowicz et al., 2016). Modeling joint probabilities over pixels or words using
neural architectures as products of conditional distributions yields state-of-the-art generation.

Remarkably, these architectures are able to model distributions over thousands of random variables
(e.g. 64⇥64 pixels as in PixelRNN (van den Oord et al., 2016a)). The question this paper addresses
is whether similar approaches can succeed in generating wideband raw audio waveforms, which are
signals with very high temporal resolution, at least 16,000 samples per second (see Fig. 1).

Figure 1: A second of generated speech.

This paper introduces WaveNet, an audio generative model based on the PixelCNN (van den Oord
et al., 2016a;b) architecture. The main contributions of this work are as follows:

• We show that WaveNets can generate raw speech signals with subjective naturalness never
before reported in the field of text-to-speech (TTS), as assessed by human raters.
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Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3
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Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

“one-hot” coding of 8 bit quantised waveform sample = 1-of-256
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Abstract
A text-to-speech synthesis system typically consists of multi-
ple stages, such as a text analysis frontend, an acoustic model
and an audio synthesis module. Building these components of-
ten requires extensive domain expertise and may contain brittle
design choices. In this paper, we present Tacotron, an end-to-
end generative text-to-speech model that synthesizes speech di-
rectly from characters. Given <text, audio> pairs, the model
can be trained completely from scratch with random initializa-
tion. We present several key techniques to make the sequence-
to-sequence framework perform well for this challenging task.
Tacotron achieves a 3.82 subjective 5-scale mean opinion score
on US English, outperforming a production parametric system
in terms of naturalness. In addition, since Tacotron generates
speech at the frame level, it’s substantially faster than sample-
level autoregressive methods.
Index Terms: text-to-speech synthesis, sequence-to-sequence,
end-to-end model.

1. Introduction
Modern text-to-speech (TTS) pipelines are complex [1]. For
example, it is common for statistical parametric TTS to have
a text frontend extracting various linguistic features, a dura-
tion model, an acoustic feature prediction model and a complex
signal-processing-based vocoder [2, 3]. These components are
based on extensive domain expertise and are laborious to de-
sign. They are also trained independently, so errors from each
component may compound. The complexity of modern TTS de-
signs thus leads to substantial engineering efforts when building
a new system.

There are thus many advantages of an integrated end-to-
end TTS system that can be trained on <text, audio> pairs
with minimal human annotation. First, such a system alleviates
the need for laborious feature engineering, which may involve
heuristics and brittle design choices. Second, it more easily al-
lows for rich conditioning on various attributes, such as speaker
or language, or high-level features like sentiment. This is be-
cause conditioning can occur at the very beginning of the model
rather than only on certain components. Similarly, adaptation to
new data might also be easier. Finally, a single model is likely
to be more robust than a multi-stage model where each com-
ponent’s errors can compound. These advantages imply that an
end-to-end model could allow us to train on huge amounts of
rich, expressive yet often noisy data found in the real world.

TTS is a large-scale inverse problem: a highly compressed
source (text) is “decompressed” into audio. Since the same text
can correspond to different pronunciations or speaking styles,

⇤ These authors really like tacos.
† These authors would prefer sushi.

this is a particularly difficult learning task for an end-to-end
model: it must cope with large variations at the signal level
for a given input. Moreover, unlike end-to-end speech recog-
nition [4] or machine translation [5], TTS outputs are continu-
ous, and output sequences are usually much longer than those
of the input. These attributes cause prediction errors to accu-
mulate quickly. In this paper, we propose Tacotron, an end-to-
end generative TTS model based on the sequence-to-sequence
(seq2seq) [6] with attention paradigm [7]. Our model takes
characters as input and outputs raw spectrogram, using sev-
eral techniques to improve the capability of a vanilla seq2seq
model. Given <text, audio> pairs, Tacotron can be trained
completely from scratch with random initialization. It does not
require phoneme-level alignment, so it can easily scale to using
large amounts of acoustic data with transcripts. With a simple
waveform synthesis technique, Tacotron produces a 3.82 mean
opinion score (MOS) on an US English eval set, outperforming
a production parametric system in terms of naturalness1.

2. Related Work
WaveNet [9] is a powerful generative model of audio. It works
well for TTS, but is slow due to its sample-level autoregressive
nature. It also requires conditioning on linguistic features from
an existing TTS frontend, and thus is not end-to-end: it only
replaces the vocoder and acoustic model. Another recently-
developed neural model is DeepVoice [10], which replaces ev-
ery component in a typical TTS pipeline by a corresponding
neural network. However, each component is independently
trained, and it’s nontrivial to change the system to train in an
end-to-end fashion.

To our knowledge, [11] is the earliest work touching end-
to-end TTS using seq2seq with attention. However, it requires
a pre-trained hidden Markov model (HMM) aligner to help the
seq2seq model learn the alignment. It’s hard to tell how much
alignment is learned by the seq2seq per se. Second, a few tricks
are used to get the model trained, which the authors note hurts
prosody. Third, it predicts vocoder parameters hence needs a
vocoder. Furthermore, the model is trained on phoneme inputs
and the experimental results seem to be somewhat limited.

Char2Wav [12] is an independently-developed end-to-end
model that can be trained on characters. However, Char2Wav
still predicts vocoder parameters before using a SampleRNN
neural vocoder [13], whereas Tacotron directly predicts raw
spectrogram. Also, their seq2seq and SampleRNN models need
to be separately pre-trained, but our model can be trained from
scratch. Finally, we made several key modifications to the
vanilla seq2seq paradigm. As shown later, a vanilla seq2seq
model does not work well for character-level inputs.

1Sound demos can be found at https://google.github.
io/tacotron
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Table 2: 5-scale mean opinion score evaluation.

mean opinion score
Tacotron 3.82 ± 0.085

Parametric 3.69 ± 0.109
Concatenative 4.09 ± 0.119

(a) Vanilla seq2seq + scheduled sampling

(b) GRU encoder

(c) Tacotron (proposed)

Figure 3: Attention alignments on a test phrase. The decoder
length is Tacotron is shorter due to the use of the output reduc-
tion factor r=5.

hard to compare models based on objective metrics, which of-
ten do not correlate well with perception [24]. We mainly rely
on visual comparisons instead. We strongly encourage readers
to listen to the provided samples.

First, we compare with a vanilla seq2seq model. Both the
encoder and decoder use 2 layers of residual RNNs, where each
layer has 256 GRU cells (we tried LSTM and got similar re-
sults). No pre-net or post-processing net is used, and the de-
coder directly predicts linear-scale log magnitude spectrogram.
We found that scheduled sampling (sampling rate 0.5) is re-
quired for this model to learn alignments and generalize. We
show the learned attention alignment in Figure 3. Figure 3(a)
reveals that the vanilla seq2seq learns a poor alignment. One
problem is that attention tends to get stuck for many frames be-
fore moving forward, which causes bad speech intelligibility in
the synthesized signal. The naturalness and overall duration are
destroyed as a result. In contrast, our model learns a clean and
smooth alignment, as shown in Figure 3(c).

Second, we compare with a model with the CBHG encoder
replaced by a 2-layer residual GRU encoder. The rest of the
model, including the encoder pre-net, remain exactly the same.
Comparing Figure 3(b) and 3(c), we can see that the alignment

(a) Without post-processing net (b) With post-processing net

Figure 4: Predicted spectrograms with and without using the
post-processing net.

from the GRU encoder is noisier. Listening to synthesized sig-
nals, we found that noisy alignment often leads to mispronunci-
ations. The CBHG encoder reduces overfitting and generalizes
well to long and complex phrases.

Figures 4(a) and 4(b) demonstrate the benefit of using the
post-processing net. We trained a model without the post-
processing net while keeping all the other components un-
touched (except that the decoder RNN predicts linear-scale
spectrogram). With more contextual information, the prediction
from the post-processing net contains better resolved harmon-
ics (e.g. higher harmonics between bins 100 and 400) and high
frequency formant structure, which reduces synthesis artifacts.

5.2. Mean opinion score tests

We conduct mean opinion score tests, where the subjects were
asked to rate the naturalness of the stimuli in a 5-point Likert
scale score. The MOS tests were crowdsourced from native
speakers. 100 unseen phrases were used for the tests and each
phrase received 8 ratings. When computing MOS, we only in-
clude ratings where headphones were used. We compare our
model with a parametric (based on LSTM [19]) and a concate-
native system [25], both of which are in production. As shown
in Table 2, Tacotron achieves an MOS of 3.82, which outper-
forms the parametric system. Given the strong baselines and
the artifacts introduced by the Griffin-Lim synthesis, this repre-
sents a very promising result.

6. Discussions
We have proposed Tacotron, an integrated end-to-end genera-
tive TTS model that takes a character sequence as input and
outputs the corresponding spectrogram. With a very simple
waveform synthesis module, it achieves a 3.82 MOS score on
US English, outperforming a production parametric system in
terms of naturalness. Tacotron is frame-based, so the inference
is substantially faster than sample-level autoregressive methods.
Unlike previous work, Tacotron does not need hand-engineered
linguistic features or complex components such as an HMM
aligner. It can be trained from scratch with random initializa-
tion. We perform simple text normalization, though recent ad-
vancements in learned text normalization [26] may render this
unnecessary in the future.

We have yet to investigate many aspects of our model; many
early design decisions have gone unchanged. Our output layer,
attention module, loss function, and Griffin-Lim-based wave-
form synthesizer are all ripe for improvement. For example,
it’s well known that Griffin-Lim outputs may have audible arti-
facts. We are currently working on fast and high-quality neural-
network-based spectrogram inversion.
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Signal  Estimation  from  Modified  Short-Time 
Fourier  Transform 

DANIEL W. GRIFFIN A N D  JAE S. LIM, SENIOR MEMBER, IEEE 

Abstract-In this paper, we present an algorithm to estimate a signal 
from its  modified  short-time Fourier transform (STFT). This algorithm 
is computationally simple and is obtained by minimizing the mean 
squared  error between the STFT of the  estimated signal  and the  modi- 
fied STFT. Using this algorithm, we also develop an iterative algorithm 
to estimate a signal from its  modified  STFT magnitude. The iterative 
algorithm is shown to decrease, in each iteration, the mean squared 
error between  the  STFT magnitude of the estimated signal and the 
modified STFT magnitude. The  major computation involved in the 
iterative algorithm is the discrete Fourier transform (DFT)  computa- 
tion, and the algorithm appears to be real-time implementable with 
current  hardware technology. The algorithm developed in this paper 
has been applied to the time-scale modification  of  speech. The result- 
ing system generates very high-quality speech, and  appears to be better 
in performancc than any existing  method. 

I. INTRODUCTION 

I N a number of practical  applications [1]-[5], it is desirable 
to  modify  the  short-time  Fourier  transform  (STFT)  or  the 

short-time  Fourier  transform  magnitude  (STFTM)  and  then es- 
timate  the  processed signal from  the  modified  STFT  (MSTFT) 
or the  modified  STFTM (MSTFTM). For  example, in speech 
enhancement by spectral  subtraction [ 2 ] ,  [3] ~ the  STFT is 
modified by combining  the  STFT  phase  of  the  degraded  speech 
with a MSTFTM,  and  then a signal is reconstructed  from  the 
MSTFT. As another  example,  in  the  time-scale  modification 
of  speech,  one  approach is to  modify  the  STFTM  and  then to 
reconstruct a signal from  the  MSTFTM.  In  most  applications, 
including  the  two  cited  above,  the  MSTFT  or  MSTFTM is not 
valid in  the  sense  that  no signal has the  MSTFT  or  MSTFTM, 
and  therefore  it is important to develop  algorithms to  estimate 
a signal whose  STFT  or  STFTM is close in some sense to  the 
MSTFT  or MSTFTM.  Previous  approaches to this  problem 
have been  mostly  heuristic [6] -[8], and have been  limited  to 
estimating  a signal from  the  MSTFT [ 6 ] ,  171. In  this  paper, 
we develop  new  algorithms  based  on  theoretical  grounds to 
estimate  a signal from  the  MSTFT  or  the  MSTFTM. In addi- 
tion,  the  new  algorithm is applied to  the  problem  of  time-scale 
modification  of  speech.  The  resulting  system is considerably 
simpler  conceptually  and  appears t o  have better  performance 
than  the  system  described by Portnoff [ I ]  . 

The  paper is organized  as  follows.  In  Section 11, we develop 
an  algorithm to  estimate a signal from  the  MSTFT by mini- 
mizing the  mean  squared  error  between  the  STFT of the  esti- 
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September  26,  1983.  This {vork was supported in part by the Advanced 
Research  Projects Agency monitored b y  ONR under  Contract SO00 14- 
81-K-0742  NR-049-509 and the National Scicncc I:ound;~tion  under 
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mated signal and  the  MSTFT.  The  resulting  algorithm is quite 
simple  computationally. In Section 111, the algorithm  in  Sec- 
tion I1 is used to  develop  an  iterative  algorithm  that  estimates 
a signal from  the MSTFTM. The iterative  algorithm is shown 
to  decrease, in each  iteration,  the  mean  squared  error  between 
the STFTM of the estimated signal and  the  MSTFTM. In Sec- 
tion IV, we present an example of the successful  application 
of  our  theoretical  results.  Specifically, we develop a time- 
scale speech  modification  system  by  modifying  the  STFTM 
first and then  estimating a signal from  the  MSTFTM  using  the 
algorithm  developed in Section 111. The resulting  system  has 
been  demonstrated to gene]-ate  very  high  quality,  time-scale 
modified  speech. 

11. SIGNAL  ESTlblATION FROM MODIFIED  SHORT-TIME 
FOUI<I~. :K TRANSFOKbl 

Let x(n)  and X,(nzS, w )  denote  a real sequence  and  its 
STFT.  The variable S is a positive  integer,  which  represents 
the  sampling  period  of X,(n, w )  in  the  variable n. Let  the 
analysis  window used in the  STFT  be  denoted  by ~ ( n ) ,  and 
with  little loss of  generality, w(n)  is assumed to  be  real, I ,  
points  long,  and  nonzero  for 0 < n < I, - 1. From  the  defini- 
tion  of  the  STFT 

x,(~?zs, o) = F~ [x,(urz~, I ) ]  = x,(rn~, I )  d m '  (1) 
m 

[ =  -- 
where 

x,(rnS, I )  = w(mS - I )  x(/) ( 2 )  

and Fl [xw(mS,  I ) ]  represents  the  Fourier  transform  ofx,(mS, 
I )  with  respect to the variable 1. 

Let Y,(mS, w )  denote  the given MSTFT  and  let y,(mS, I )  
be given by 

Yw(mS,  I )  = - Y,(mS, w )  c j w l  dw. ( 3 )  sn 271 w = - r  

An arbitrary Y , ( m S .  o), in general, is not  a valid STFT in  the 
sense that  there is no sequence  whose  STFT  isgiven by Y,(mS, 
0). In this  section, we develop a new  algorithm to estimate a 
sequence X(/?) whose  STFT X , ( m S ,  w )  is closest  to Y,(rn.S, 
o) in the  squared  error  sense. 

Consider  the  following  distance  measure  between x(n)  and 
a given MSTFT Y,(mS, 0): 

ea 

D[X(fZ),  Y,(f72S, a)] = -- I In /X,(flZS, w )  
m = -m 2n w =-n 

- Y,(mS, o ) l 2  dw. (4) 
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Part 3 - What do we want from our speech signal representation?
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We ask a lot of our representation

• Easy to extract from speech waveforms
• Compact (low dimensional)
• “Well-behaved” because statistical 

modelling will introduce errors 

• reconstruction of waveforms from 
corrupted parameters must be possible

• Statistical model training aims to 
minimise error (loss) function in the 
domain of the representation
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What will statistical modelling do to our acoustic features?
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Some things that statistical models might do to our acoustic features

• Incorrect variance of acoustic feature trajectories (too much or too little variance)
• Failure to capture covariance between features
• Temporal smoothing
• Averaging of features (e.g., within a cluster of HMM states)
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Abstract

This paper presents the beginnings of a framework for formal
testing of the causes of the current limited quality of HMM
(Hidden Markov Model) speech synthesis. This framework sep-
arates each of the effects of modelling to observe their indepen-
dent effects on vocoded speech parameters in order to address
the issues that are restricting the progression to highly intelligi-
ble and natural-sounding speech synthesis.

The simulated HMM synthesis conditions are performed on
spectral speech parameters and tested via a pairwise listening
test, asking listeners to perform a “same or different” judgement
on the quality of the synthesised speech produced between these
conditions. These responses are then processed using multidi-
mensional scaling to identify the qualities in modelled speech
that listeners are attending to and thus forms the basis of why
they are distinguishable from natural speech.

The future improvements to be made to the framework will
finally be discussed which include the extension to more of the
parameters modelled during speech synthesis.
Index Terms: Speech synthesis, Hidden Markov models,
Vocoding

1. Introduction
Despite several years of improvements in the quality of speech
generated using HMM (Hidden Markov Model) synthesis, this
type of synthetic speech still stubbornly remains significantly
less natural than speech output from good concatenative (unit
selection) synthesis systems [1, 2], as consistently reflected in
the results from the annual Blizzard challenge [3, 4, 5]. Al-
though it can achieve higher intelligibility than unit selection,
HMM synthesis is not yet as natural as unit selection, and nei-
ther are judged by listeners to be as natural as real speech.

It is common in the literature to find the cause for the re-
duced naturalness of HMM speech stated as “over-smoothing”,
and that this is the fault of the statistical model, but to the best of
our knowledge there are no formal, published studies support-
ing this claim. The idea of “over-smoothing” is at first glance
seemingly a simple one, but may conflate a number of differ-
ent effects of signal representation and of statistical modelling
in both spectral and temporal domains. Smoothing is inherent
in the statistical modelling framework, of course. The spectral
envelope is smoothed first by the low-dimensional representa-
tion, then again by averaging over consecutive frames and over
multiple tokens. The temporal structure of the speech param-
eters is smoothed because the model represents the trajectory
with limited resolution (e.g., 5 states per phone-sized-unit).

What is needed is a framework in which we can separate
out the different contributions of the various processes of mod-
elling. This is the contribution of this paper.

1.1. A simulation framework

This paper introduces such a framework and – as a first illus-
tration of its use – tests a couple of the potential causes of the
degradation in naturalness introduced by the use of statistical
models. The framework is general and could be applied to many
different aspects of the problem. The idea is to simulate the
effects of modelling vocoded speech, in a carefully controlled
manner. Knowledge obtained by such experiments could then
be used to identify those areas that are causing the problem, and
to eventually rectify them.

Current HMM-based synthesisers are large, complex sys-
tems. There are interactions between the signal processing (e.g.,
how the spectral envelope is extracted and how it is represented
for the purposes of modelling) and the modelling (e.g., the pa-
rameter sharing structure of the model and how much data are
available to estimate each free parameter) which need to be in-
vestigated. In the work presented here, this will be done by
removing the modelling part completely and replacing it with a
series of operations which are designed to simulate some mod-
elling effects. Our proposed approach allows us to vary the
strength of these effects, and to examine the interactions be-
tween them. Thus, by using simulation, we can continuously
vary the system from being a simple vocoder at one end of the
scale, to a simulated HMM synthesiser at the other. In this pa-
per, the effects that we use are temporal smoothing and variance
scaling of the speech parameters representing the spectral enve-
lope.

1.2. Measuring the effects

The second component of the proposed framework is perceptual
testing of the acoustic consequences of the simulated effects of
statistical modelling. Asking listeners to attend to specific as-
pects of the speech is problematic [6, 7] and also risks biasing
them towards certain phenomena. Since we are not entirely sure
what perceptual dimensions listeners use when rating the natu-
ralness of synthetic speech, it is not clear what aspects of the
signal we could ask them to attend to. Therefore, we adopt a
less direct methodology, and ask the listeners to perform a very
simple task where the instructions contain no bias towards any
particular acoustic property or perceptual dimension. This task
is a simple “same or different” judgement on pairs of stimuli,
from which we can derive a matrix of pairwise perceptual dis-
tances. Multidimensional scaling (MDS) allows such data to be
visualised and from this visualisation we can identify the per-
ceptual dimensions, that is, what the listeners are attending to.
Tracing these back to the simulated effects involves interpreting
the MDS visualisation.
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ABSTRACT

Even the best statistical parametric speech synthesis systems do not
achieve the naturalness of good unit selection. We investigated pos-
sible causes of this. By constructing speech signals that lie inbe-
tween natural speech and the output from a complete HMM synthe-
sis system, we investigated various effects of modelling. We manip-
ulated the temporal smoothness and the variance of the spectral pa-
rameters to create stimuli, then presented these to listeners alongside
natural and vocoded speech, as well as output from a full HMM-
based text-to-speech system and from an idealised ‘pseudo-HMM’.
All speech signals, except the natural waveform, were created using
vocoders employing one of two popular spectral parameterisations:
Mel-Cepstra or Mel-Line Spectral Pairs. Listeners made ‘same or
different’ pairwise judgements, from which we generated a percep-
tual map using Multidimensional Scaling. We draw conclusions
about which aspects of HMM synthesis are limiting the naturalness
of the synthetic speech.

Index Terms— speech synthesis, hidden Markov modelling,
vocoding

1. INTRODUCTION

HMM synthesis remains significantly behind the quality of natural
speech and speech output from concatenative (unit selection) synthe-
sis systems under ‘best-case’ conditions, as repeatedly highlighted
in the results from Blizzard Challenges [1, 2, 3, for example], even
though much progress has been made [4, 5]. Whilst the HMM ap-
proach is relatively robust when it comes to handling training data
with poor phonetic coverage or low recording quality [6], it fails to
produce natural-sounding speech even when plentiful high-quality
data are available [7].

Various explanations have been postulated regarding the cause
of this apparent ceiling effect, the most common including: over-
smoothing of the spectral envelope as a consequence of averaging
over multiple speech samples [8, 9]; over-smoothing of the param-
eter trajectories due to the MLPG algorithm [10, 11]; poor perfor-
mance of vocoders [12], particularly regarding source-filter separa-
tion. However, these theories are only occasionally tested in formal
studies [13, 14, 15].

Following a methodology that we proposed earlier [13], the cur-
rent study adds a number of novel contributions: the use of ide-
alised ‘pseudo-HMMs’ which only involve averaging a few contigu-
ous frames from a single training example aligned with one HMM
state, and so remove the effect of across-class averaging (explained
in Section 3.2); two different speech parameterisations; the use of
a commercial-quality speech database; the inclusion of natural (not

Condition Speech Hanning Standard
signal smoothing deviation
origin window scaling

duration (%)
(frames)

hann-1-stddev-080 vocoded none 80
hann-5-stddev-080 vocoded 5 80

hann-11-stddev-080 vocoded 11 80
hann-21-stddev-080 vocoded 21 80

Vocoded vocoded none 100
hann-5-stddev-100 vocoded 5 100

hann-11-stddev-100 vocoded 11 100
hann-21-stddev-100 vocoded 21 100
hann-1-stddev-120 vocoded none 120
hann-5-stddev-120 vocoded 5 120

hann-11-stddev-120 vocoded 11 120
hann-21-stddev-120 vocoded 21 120
hann-1-stddev-140 vocoded none 140
hann-5-stddev-140 vocoded 5 140

hann-11-stddev-140 vocoded 11 140
hann-21-stddev-140 vocoded 21 140
hann-5-stddev-match vocoded 5 match

original
hann-11-stddev-match vocoded 11 match

original
hann-21-stddev-match vocoded 21 match

original
HMM-synth HMM none 100

(with GV)
Original natural N/A N/A

pseudo-HMM pseudo-HMM none 100

Table 1. The 22 conditions presented to listeners

vocoded) waveforms; the inclusion of a complete text-to-speech sys-
tem. Our initial study [13] was limited to adjusting temporal smooth-
ness and variance of the speech parameters in vocoded speech. As
in [13], here we also focus on the spectral parameters. In all stimuli
presented to listeners, the original, natural phone durations (found
using forced alignment) and F0 were used. In related studies we
have also investigated the relative contributions of source and filter
[14] and the independence assumptions made by the statistical mod-
els [15].

2. METHODOLOGY

The framework introduced in [13] simulates various effects of mod-
elling speech parameters in an HMM framework. Whilst the ap-
proach is general and extensible in principal, it was only used to in-
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Behaviour of speech parameterisations
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A toy experiment

• Parameterise a speech waveform using
• vocoder features (high-dimensional)
• engineered speech synthesis features 

(reduced dimension)
• quantised waveform samples (like 

Wavenet)
• Corrupt the parameters in various ways, 

as modelling might do
• isolated frame (or sample) corruption
• moving average (temporal smoothing)
• Reconstruct waveform
• Listen to perceptual consequences
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Typical vocoder features, from 
STRAIGHT

• High-resolution (i.e., half FFT length)
• smooth spectral envelope
• aperiodic energy ratio
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Natural speech vs Vocoded speech
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Vocoded speech - corrupt 0.1% of frames (200 frames per second)
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Vocoded speech - corrupt 1% of frames (200 frames per second)
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Vocoded speech - corrupt 5% of frames (200 frames per second)
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Vocoded speech - corrupt 10% of frames (200 frames per second)
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Vocoded speech - corrupt 20% of frames (200 frames per second)
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Natural speech vs Vocoded speech
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Vocoded speech - moving average, length 20 frames (100ms)
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Typical acoustic features used in 
speech synthesis: Mel cepstrum

• Dimensionality-reduced smooth 
spectral envelope, represented as 
Mel cepstrum, order 40

• Aperiodic energy averaged across 
Mel-scaled frequency bands
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Natural Speech vs Vocoded speech via Mel-cepstrum
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Vocoded speech via Mel-cepstrum - corrupt 0.1% of frames
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Vocoded speech via Mel-cepstrum - corrupt 1% of frames
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Vocoded speech via Mel-cepstrum - corrupt 5% of frames
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Vocoded speech via Mel-cepstrum - corrupt 10% of frames
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Vocoded speech via Mel-cepstrum - corrupt 20% of frames
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Quantised waveform

• Reminder: Wavenet represents 
samples using 1-of-256 encoding, 
which would scale badly with higher 
bit depth

• 1-of-256 is the most naive sparse 
code. Surely someone can do better 
(cf keynote by Aggelos Katsaggelos)
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Natural Speech vs Quantised waveform - 8 bit
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Quantised waveform - 6 bit
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Quantised waveform - 4 bit

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Quantised waveform - 8 bit - corrupt 0.1% of samples
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Quantised waveform - 8 bit - corrupt 1% of samples
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Some things to consider

• The choice of speech parameterisation affects many things
• quality of synthetic speech, obviously
• the perceptual consequences of modelling errors (which will always be present)
• the available choices for the objective (loss) function of your chosen machine 

learning method (e.g., DNN)
• we have no idea what the error surface looks like !

• The shape of the error surface is important for successfully learning a model from data
• parameter initialisation, convergence properties, sensitivity to design choices and hyper-

parameters, … (SGD can be tricky to tune on hard problems - cf keynote by Francis Bach)
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Objective vs subjective error

• Objective measures
• image/video reconstruction: PSNR, SSIM,… 
• machine translation / text summarisation: Bleu, METEOR, Rouge,…
• speech transmission: PESQ, POLQA,…
• speech synthesis: spectral distortion, F0 mean square error & correlation,…

• But these are not the same as subjective error (i.e., as perceived by a human)
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Abstract
We propose to use a perceptually-oriented domain to improve
the quality of text-to-speech generated by deep neural networks
(DNNs). We train a DNN that predicts the parameters required
for speech reconstruction but whose cost function is calculated
in another domain. In this paper, to represent this perceptual
domain we extract an approximated version of the Spectro-
Temporal Excitation Pattern that was originally proposed as part
of a model of hearing speech in noise. We train DNNs that pre-
dict band aperiodicity, fundamental frequency and Mel cepstral
coefficients and compare generated speech when the spectral
cost function is defined in the Mel cepstral, warped log spec-
trum or perceptual domains. Objective results indicate that the
perceptual domain system achieves the highest quality.
Index Terms: speech synthesis, DNN, objective measures,
spectral analysis

1. Introduction
The quality of speech generated by statistical parametric sys-
tems has benefited from advances in acoustic models [1–6],
vocoders [7, 8] and postfilters [9–11]. However the challenge
of how to create truly high quality speech from learned vocoder
parameters still remains. The vocoder itself is certainly one of
the main limitations. But modelling assumptions, such as inde-
pendence among different acoustic parameters, e.g., source and
the filter, have also been shown to cause great degradation [12].
It is inevitable that any vocoder or statistic model will introduce
error, so perhaps we should aim for errors that are introduced at
any stage of the process to be as imperceptible as possible.

The idea of minimising a perceptual error is not new. Mini-
mum Generation Error (MGE) [3,13] for hidden Markov model
(HMM)-based speech synthesis could be thought of as a step
in this direction. In MGE training, the model parameters are
updated not to maximize the likelihood of the data but to mini-
mize the error between generated trajectories and ones extracted
from natural speech. The error could be the Euclidean distance
between generated and extracted trajectories [3] or a distance
measured in a transformed domain like the log magnitude spec-
trum [13]. Unified feature extraction and model training could
also lend itself to perceptual error minimisation [14, 15]. Naka-
mura et. al [14] proposed to extract Mel cepstral coefficients
that maximize the likelihood of the data. More recently Shinji
et. al introduced a compact representation of the spectrum us-
ing autoencoders [15]. Both techniques could be seen as error-
minimising alternatives to Mel cepstral analysis [16].

The recent success of Deep Neural Network (DNN) speech
synthesis [5, 6, 17, 18] suggest a range of new directions for
minimum perceptual error training. In general, when training
a DNN to predict acoustic parameters, all parameters are opti-

mised using a shared cost function, allowing the model poten-
tially to learn dependencies between output parameters.

DNN training easily allows for different cost functions to
be used. It is possible to train a DNN to predict Mel cepstral
coefficients but to calculate the error in the higher-dimensional
spectral domain, simply by reformulating the cost function. It
is also possible to train a DNN to predict the spectrum directly.

There are, however, more perceptually relevant representa-
tions of speech that could be used to measure the error, but that
do not allow for synthesis. So, we might measure the error not
directly on the output acoustic features (i.e., vocoder parame-
ters) but in some other domain, which may not itself be useful
for speech generation. In this situation, it is desirable to train
a model that predicts vocoder parameters – necessary to even-
tually generate the waveform – but to calculate the error in this
perceptual domain. In this paper we exploit this idea, using a
particular perceptual representation of the speech spectrum.

Section 2 presents different spectral parametrisations fol-
lowed by Section 3 where we propose minimum perceptual er-
ror training using such representations. We present our experi-
mental design and results in Section 4 followed by discussions
and conclusions.

2. Spectral parametrisation
We detail three spectral parametrisations: the Mel cepstral co-
efficients, the warped log magnitude spectrum and the Spectro-
Temporal Excitation Pattern (STEP).

2.1. Mel cepstral coefficients

We can represent the spectrum H(ej!
) by a M -th order series

of coefficients referred to as Mel cepstral coefficients {cm}M�1
m=0

following the relation:

H(ej!
) = exp

M�1X

m=0

cme�jm !̃ (1)

!̃ = tan

�1 (1� ↵2
) sin !

(1 + ↵2
) cos ! � 2↵

(2)

where ↵ is a factor that controls warping in the frequency do-
main. We can choose ↵ such that !̃ spans the frequency axis
on a particular scale, for instance the Mel scale, leading to the
so-called Mel cepstral coefficients [16].

The discrete log magnitude spectrum is defined by the Mel
cepstral coefficients as follows:

log |H(!k)| =

M�1X

m=0

cm cos(m !̃k) (3)

h = D↵c (4)
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DNN performing 
speech synthesis

Differentiable 
function mapping 

to another domain

Acoustic parameters needed 
to generate speech

Domain in which we 
want to minimise loss
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Are Generative Adversarial Networks the answer ?

• Typically, the adversary is trying to discriminate between natural and synthetic speech
• The generative network is learning both

• to do speech synthesis
• to fool the adversary into classifying its output as ‘natural’

• Unfortunately, there is no guarantee that the adversary will do its job in a      
perceptually-relevant way
• e.g., discrimination might be possible from inaudible properties of the speech signal
• the generative network might learn to beat the adversary, but the adversary is still only 

an objective measure and not a human listener
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Abstract
We propose a learning-based postfilter to reconstruct the

high-fidelity spectral texture in short-term Fourier transform
(STFT) spectrograms. In speech-processing systems, such as
speech synthesis, conversion, enhancement, separation, and
coding, STFT spectrograms have been widely used as key
acoustic representations. In these tasks, we normally need to
precisely generate or predict the representations from inputs;
however, generated spectra typically lack the fine structures that
are close to those of the true data. To overcome these limita-
tions and reconstruct spectra having finer structures, we propose
a generative adversarial network (GAN)-based postfilter that is
implicitly optimized to match the true feature distribution in ad-
versarial learning. The challenge with this postfilter is that a
GAN cannot be easily trained for very high-dimensional data
such as STFT spectra. We take a simple divide-and-concatenate
strategy. Namely, we first divide the spectrograms into multiple
frequency bands with overlap, reconstruct the individual bands
using the GAN-based postfilter trained for each band, and fi-
nally connect the bands with overlap. We tested our proposed
postfilter on a deep neural network-based text-to-speech task
and confirmed that it was able to reduce the gap between syn-
thesized and target spectra, even in the high-dimensional STFT
domain.
Index Terms: postfilter, deep neural network, generative adver-
sarial network, statistical parametric speech synthesis

1. Introduction
The aim with many speech-processing systems, including
speech synthesis, conversion, enhancement, separation, and
coding, is to produce speech with quality indistinguishable from
clean and real speech. However, the quality of synthesized or
processed speech is usually not as good as that of real speech.
In this paper, we address the problem of restoring spectro-
temporal fine details of a synthetic speech signal to make it
sound like real speech.

Many methods for statistical parametric speech synthesis
and voice conversion tend to produce over-smoothed spectra,
which often result in muffled and buzzy synthesized speech.
This is caused by a side effect of assuming a particular form
of loss function (e.g., mean squared error) or distribution (e.g.,
Gaussian) for parameter training of the acoustic model. Con-
ventionally, postfiltering methods based on the global variance
[1, 2] or modulation spectrum [3] have proved to be effective in
improving the intelligibility of synthesized speech.

Speech enhancement and separation are typically carried
out using a Wiener filter or time-frequency mask. While a time-
frequency mask allows aggressive suppression of noise com-
ponents, it can also over-suppress and damage speech compo-

nents. A Wiener filter provides a conservative way of separat-
ing out a speech signal from a mixture signal so that the sum
of the separated signals is ensured to be equal to the mixture;
however, it often produces artifacts perceived as time-varying
tones known as musical noise. To reduce artifacts or musical
noise in processed speech, postprocessing methods using cep-
stral smoothing techniques have been proposed [4].

The limitation of these postprocessing methods is that they
rely on heuristics due to the difficulty of modeling the exact
probability density of the spectrograms of real speech. This typ-
ically causes generated spectra to lack the fine structures that are
close to those of the true data. Recently, learning-based postfil-
ters have been proposed [5, 6]. These postfilters are optimized
using a particular form of loss function or distribution. How-
ever, it is difficult to completely overcome the over-smoothing
problem as long as a manually designed metric is used.

To overcome these limitations, we previously proposed [7]
the use of a generative adversarial network (GAN) [8], which
makes it possible to generate random samples following the un-
derlying data distribution without the need for the explicit form
of its density, to construct a postfilter for acoustic-feature se-
quences generated using a deep neural network (DNN)-based
text-to-speech (TTS) synthesizer. In that work, we discussed
the effectiveness of our postfilter when applied to a sequence of
low-dimensional vocoder parameters, such as the mel-cepstral
features; however, its effectiveness when applied to a sequence
of high-dimensional features, such as the short-time Fourier
transform (STFT) spectra, has not been clarified.

Motivated by this background, in this paper, we propose
a GAN postfilter that allows the handling of high-dimensional
features, such as the STFT spectra, so that it can be applied to
any speech-processing system (not limited to speech synthesis)
that produces the spectrograms of speech. This is particularly
useful and convenient because once a magnitude spectrogram
is obtained, we can use phase-reconstruction algorithms [9] to
reconstruct a time-domain waveform signal.

We also previously proposed a DNN-based TTS system that
directly produces a sequence of STFT spectra in the hope of
going beyond the limitation of the sound quality of vocoders
[10]. In this paper, we investigate the application of our pro-
posed postfilter to the STFT spectrograms generated using our
DNN-TTS system. The experimental results revealed that the
use of the proposed postfilter had a certain effect in reducing the
gap between synthesized and target spectra, even in the high-
dimensional STFT domain.

This paper is organized as follows. In Section 2, we explain
the proposed GAN-based postfilter for STFT spectrograms. In
Section 3, we explain how we used it in our DNN-based TTS
system. We present the experimental results in Section 4 and
summarize our findings in Section 5.
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The take-home message

• We do not have very sophisticated models of human perception
• The best we can do at the moment is to minimise loss in an appropriate domain

• That means we still have to choose our signal representation carefully
• that’s feature engineering ! 

• GANs minimise loss in a different domain to the acoustic features - very clever !

• But, the adversary is not constrained to behave like a human listener - less clever !
• …. so, can you find a way to do that…. ?
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Where did the signal processing go?
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